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Abstract--The first part of this paper presents a simple and
systematic technique for constructing multidimensional M-ary
phase shift keying (MPSK) trellis coded modulation (TCM) codes.
The construction is based on a multilevel concatenation approach,
in which binary convohitionai codes with good free branch
distances are used as the outer codes and block MPSK modu-
lation codes are used as the inner codes (or the signal spaces).
Conditions on phase invariance of these codes are derived and
a multistage decoding scheme for these codes is proposed. The
proposed technique can be used to construct good codes for both
the additive white Gaussian noise (AWGN) and fading channels
as is shown in the second part of this paper.

Index TermsmConcatenation, MPSK modulation, multidimen-
sional trellis coded modulation, multistage decoding.

I. INTRODUCTION

INCE the publication of the celebrated paper by Unger-Iboeck on trellis coded modulation (TCM) [1], there has
been a boom of research in this area. Over the last fourteen

years, researchers have proposed various techniques of con-
structing modulation codes using both convolutional codes

(TCM) [1]-[7] and block codes [block coded modulation
(BCM)] [8]-[14]. Almost all existing techniques for con-

structing TCM codes rely heavily on computer searches to

find good TCM codes. These techniques work very well for
small code complexities and rates. However, for large code

complexities and high rates, the search becomes extremely
time consuming (if not impossible) and a more systematic

technique of construction is required. Most of the problems
associated with the algebraic construction of TCM codes arise
due to the lack of in-depth knowledge of convolutional codes.

In addition, the nonlinearity of the mapping function (true for

most signal constellations) which maps the coded output bits
of the convolutional encoder onto the signal set, complicates
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the problem further. BCM codes on the other hand, have
the advantage of being extremely rich in algebraic structure

and phase symmetry, as has been shown in [10]-[13]. BCM
codes however, have the disadvantage of being slightly poor in

performance for low signal-to-noise ratio (SNR), as compared
to TCM codes of the same decoding complexity, due to the

large number of nearest neighbors.
Pietrobon et al. extended Ungerboeck's results to multidi-

mensional MPSK signal constellations [3]. They proposed a

set partitioning technique for multidimensional MPSK sig-
nal constellations similar to Ungerboeck's set partitioning

technique and then used computer search to design multidi-
mensional MPSK TCM codes. However, due to the limitations

of computer search, as were outlined above, they restricted
themselves to 4 x 2 dimensions. In addition, to reduce the

search complexity, they placed some other restrictions on
the computer search. Multidimensional MPSK TCM codes
have various advantages over two-dimensional (2-D) Unger-
boeck TCM codes, the main ones being: 1) higher spectral
efficiencies can be achieved, 2) codes constructed over mul-

tidimensional MPSK signal constellations have better phase
invariance properties than that of 2-D Ungerboeck MPSK

codes, and 3) lower average decoding complexities to achieve

the same performance.
A common point to be noted among all the construction

techniques available in literature (whether TCM or BCM) is
that the modulation codes constructed by these techniques

require large decoding complexity to achieve large coding

gains. The large decoding complexity of these codes makes
them impractical for applications where high reliability and

high data rates are required. As such, what is required is a
multistage decoding technique which reduces the decoding

complexity, while maintaining good performance.
This paper presents a simple and systematic technique for

designing multidimensional MPSK TCM codes with minimal
computer search. The technique will be used to construct good
codes for both the AWGN and fading channels. Though the

main emphasis has been to construct codes for the MPSK
signal constellation, the results are applicable to other signal
constellations as well and modifying the existing construction

for other signal constellations is straight forward. This paper

is organized as follows: Section 11 of the paper presents a new

concept, branch distance of convolutional codes, which will
be used extensively in the later sections. Section III outlines
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the basic construction technique of the proposed codes, and,
in addition, shows that the codes constructed in [3] turn out

to be a special case of the proposed construction. Section

IV discusses phase invariance. In Section V, a multistage
decoding algorithm for the proposed codes is presented and

it's decoding complexity is discussed. Section VI concludes

by discussing the design rules for conslructing good codes
using the proposed technique.

II. BRANCH DISTANCE OF CONVOLUTIONAL CODES

For two code sequences u and v in a binary linear con-
volutional code, the branch distance between them, denoted

db(tl, V), is defined as the number of branches in which u and

v differ (or equivalently, this is simply equal to the number of
nonzero branches in u _ v, where _ denotes binary addition).
For a code sequence u in a binary linear convolutional code,

the branch weight of u denoted wb(u) is simply the number
of nonzero branches in u (or equivalently w_ (u) is the branch
distance between u and 0, where 0 refers to the all-zero code

sequence, i.e., wb(u) = rib(u,0)). The minimum free branch
distance of a convolutional code C, denoted dn-f_, is the

minimum branch distance between any two code sequences,
i.e.,

dB-f_ee A_ min{db(u,¢): u,v E C and u ¢ _}. (2.1)

Theorem 1: For a rate kin feedforward binary linear con-
volutional code of total encoder memory 3", its minimum free

branch distance, dB-free, is upper bounded by 1 + L'_/kJ.
Proof." Let the k inputs to the encoder be denoted as

Ix, I2,..., Ik and let the encoder memories associated with.

input Ii be 3"ifor 1 < i < k. Let min{wb(u)} denote the min-
imum branch weight among all the code sequences associated
with the binary linear convolutional code. Let rain/k=1 7i =

3% Consider that the binary sequence (1,0,0,..-) is fed
into the input Ij and the all zero sequence (0, 0, 0,...) is

fed into the remaining inputs. The branch weight of the

resulting code sequence is upper bounded by 1 + 3'j. Hence,
min{wb(u)} < 1 + ?j. Since the code is linear, this also

corresponds to an upper bound on the minimum free branch
distance, i.e., dB-free <_ {1 + minik=l 3'_}. Given any 7 and

k, the idea is to maximize riB-free. Hence, max-r,k(dB.free ) <
max.r,k{1 + mini_=1%}, i.e., the best dB-er_ for a given 3' and

k is < {1 + max.y,k{minik=x 3"i}}- It is readily seen that the

value of max-r,k{min/k=l 3'i} is L3"/kJ. A A
Theorem 2: If dB-f_e_ = 1 + L3'/kj, then NB-er_, the

number of codewords with branch weight dB-f_, is lower

bounded by (2 p - 1) where p is the number of inputs of
the convolutional encoder which have an encoder memory of

L3"/kJassociated with it.

Proof." Let el denote the binary sequence (1,0,0,...)
i.e., 1 followed by the all zero sequence and let eo denote the

all zero binary sequence (0, 0, 0,---). Consider any nonzero

code sequence u. Then wb(u) > 1 + L3"/kJ.Let the p inputs
which have an encoder memory of [3"/kJ associated with it
be Ij for 1 < j < p. Consider that e0 is fed into the inputs

Ij for p+ 1 < j < k. Also, consider that the inputs lj

TABLE I
OP'nMtrM BRANCH DLvrANcE PAVE 1/2 CODES

7 T I G [ dFl-¢r_P : I Nl:l-fr_'__a I da-fr_,_, u j NH.fr_*

2 2 1 2 1

5
2 2 3 1 3 1

3 64 4 1 5 1

_22 5 2 5 i4

\_ii / 8[
(_a_A 7 4 8 2

R

532 a 8 6 9 2

[ 622
\ 575 a 8 1 10 4

9 6244 a 9 I II 2

l0 "'..(3576)6322. 10 3 12 2

t Totalen¢oder memory.

Minimum free branch distance.

zx Number of eodewords with branch distance dB_free.
IJFree Hamming distance.

* Number of codewords with Hamming distance dH_free.

Note: The code generators have been listed in octal, where the

octal representation of xyz is 4 . x --k 2 • y -I- z and x, y

and z denote three binary bits.

for 1 _< j < p can take only one of the two sequences eo
or ex. Then the convolutional encoder under this constraint

has C2p - 1) distinct nonzero input sequences. Each of the

(2P - 1) sequences will have branch weight < 1 + [3"/kJ.
Since dB-f_ = 1+ L3"/kj, each of the (2 l°- 1) sequences thus

has branch weight 1+ [3"/kJ. Hence, NB-f_ > (2p - 1).AA

A binary linear feed-forward convolutional code is said to
be optimal in terms of branch distance if it achieves the upper

bound as stated in Theorem 1 for a given 3' and k. Also,

a code is said to be optimal in terms of the free Hamming

distance, dH-f_, if it achieves the maximum dH-f_ possible

for a given % k and n as specified in [15]. Note, from Theorem
1, for a given dB-f_ee, higher encoder memory is required to

achieve the same dB-f_ as k increases, i.e., given a certain

fixed dB-f_, there is a tradeoff between complexity and rate.
In addition, as is shown in Theorem 2, NB-f_ also increases
as the rate increases and hence there is also a tradeoff between

rate and performance. A search has been performed on rate-
1/2, -2/3 and -3/4 codes to find the best ones in terms of ds-f_

and NB-f_. The results are given in Tables I-IlL

An important point to note is that codes optimum in terms

of branch distance may not be optimum in terms Of the free

Hamming distance d8.free and vice-versa. For small values

of % it has been observed that codes optimum in terms of
branch distance are also optimum in terms of dH-f_, however,

the same does not hold for higher values of 3". From Table
I, we notice that up to 3" = 7, the search yields codes

which meet the upper bound in terms of dB-f_ee, however

from that point on, the best codes start falling short of the
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TABLE II

OPTIMUM BRANCH DISTANCE RATE 2]3 CODES

13 I dB-fr_ * ] NR-freea I dlq-fr_ la I NIq-free"

2 4 3

3 5 3

4 7 6

5 14 6

6 30 6

4 s

4

54

74 14 t s

26 46 )
0 36 s

57 0 )
64 55

t Total encoder memory.

: Minimum free branch distance.

zx Number of codewords with branch distance dB.free.

IJ Free Hamming distance.

* Number of codewords with Hamming distance dH-free"

Note: The code generators have been listed in octal, where the

octal representation ofxyz is4-x + 2-y + z and x,y

and z denote three binary bits.

7 t

3

OPTIMUM

6 2

2 4

2 2
8

4

7

7
II

0

74

74
8

TABLE III

BRANCH DISTANCE RATE 3/4 CODES

I dn-fr_ t I NR-fr4"_ A I dn-free u I Nil-free*

2 11 3 3

0 6

6 6

6 2

7 1 0

6 5 7 1

k0 5 6

74 2 34
9 44774

54 0 4

3 16 5 8

4 30 5 I

* btal encoder memory.

** Minimum flee branch distance.

zx Number of codewords with branch distance dB.free.

I1 Free Hamming distance.

" Number of codewords with Hamming distance dH_free.

Note: The code generators have been listed in octal, where the

octal representation ofxyz is 4.x + 2.y + z and x,y

and z denote three binary bits.

in this paper we will focus on binary convolutional codes as

the outer codes.

Outer Codes." The outer code, Ci, at the ith level for

1 < i < q is chosen to be a convolutional code of rate kiln�

with optimum branch distance for the given rate and state-

complexity. The parameters ki and ni depend upon the choice

of the inner codes, as will be clear after the discussion of inner

codes. Each outer code is selected from the tables mentioned

in Section II. The reasons for selecting an optimum branch

distance convolutional code will be clear when discussing

Theorems 4-6.

Inner Codes." Let S denote the two-dimensional MPSK

signal constellation which consists of 2 t signal points. Let S m

denote the set of all m-tuples over S, where rn is a positive

integer. Since S is a two-dimensional signal space, S "_ is an

m x 2-dimensional signal space in which each signal point

is a sequence of m MPSK signals. To construct the proposed

codes, the signal space is chosen as a subspace of S m, denoted

A0. In this paper, A0 is consmmted using the multilevel coding

method proposed by Imai and Hirakawa [8].

Using the set partitioning approach proposed by Ungerboeck

in [1], each signal point in the set S is labeled by a string

of symbols from GF(2). Since S contains 2 t signal points,

we shall consider a labeling whose set of label strings is of

the following form: L _= {ala2...at: a_ E GF(2) for 1 _<

i _< _}. Let A denote the one-to-one mapping from L to

S. If ala2""at is the label for a signal point s, then

s = A(ala2-.. at). Define an addition "+" on the label set

' ' ..a_,inL as follows: For two labels, asa2...at and ala 2.

' ' " " _ a_L, ala2...at+ala2 ...art = allla2,,. ..at where a i = ai

for 1 < i < t and • is the modulo-2 addition. With this

addition, L is simply the vector space of all l-tuples over

GF(2). We call L the label space for S.

For 1 < i < _, let Co,i be a binary (m, k0,i, 6o,i) linear block

code of length m, dimension ko,i and minimum Hamming

distance 6o,/. Let

V i = (vi,,, vi,2,'" vi,..) (3.1)

upper bound by one. Codes shown in Tables II and III

meet the upper bound, however as the complexity increases,

NB-e_ also starts increasing. Also listed in the tables is the

dH-free and Nn-free, the number of codewords with dH-free.

The code generators in the tables have been listed in octal

with the lowest degree on the left and the highest on the

right, e.g., (622)8 - 1 + D + D 4 + D 7. As an example,

consider the eighth code listed in Table I. This is a rate-l/2

convolutional code with generators 1 + D + D 4 + D 7 and

1 + D 2 + D 3 + D 4 + D 5 + D 6 + D s and dB-free = 8.

HI. CONSTRUCTION OF MULTIDIMENSIONAL MPSK CODES

The proposed multidimensional MPSK codes are con-

structed using a q level concatenation approach as shown

in Fig. 1. Outer codes in the multilevel concatenation may be

either block or convolutional, binary or nonbinary. However,

be a code word in Co,i for 1 < i < L We form the following

sequence:

V1 * V2 * "-* Vt

A
---- ('UI,lV2,1 " " ' V_,I _Vl,2V2,2 " " " "Or,2

• . . _ Vl,mV2,m - . . Vt,rn ). (3.2)

For 1 < j < m, we regard Vl,jV2,j .-.vt,j as the label for a

signal point sj in the MPSK signal set S. Then V1 *V2.. -*Vt

is simply an m-tuple over the label set L and

A(V1 * V2"-- * V,)

---- (/_(UI,lV2,1""' VL1),/_(U1,2V2,2 "'" Vt,2)'

" " " ,,_(Vl,mV2,rn " " " Vg,rn) )

= (sl,se,'",Sm) (3.3)

is an m-tuple over the MPSK signal set S (a sequence of
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Fig. 1.
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m MPSK signals) which is a signal point in the m x 2-

dimensional signal space S 'n. From codes Co,i for 1 < i < t,
we form the following set of m-tuples over the label set L:

Co,1* C0,2.'-'* C0,,

= {V1 * V2 *--- * V_: Vx e Co,1, V_ 6 Co,2,

• --Vt • Co,t}. (3.4)

We will denote Co,] * Co,2 * ... * Co,t by f_o- Then, f_o is

a vector space (or a linear code) over L (a subspace of the

vector space of all the m tuples over L, denoted L'_). [20

has 2ko,'+ko,_+'+M.t vectors. Hence, the dimension of [20 is

ao = ko,1 + ko,2 + "" + ko,e. Recall, that for 1 < i < q, ni

denotes the number of output coded bits of the convolutional

encoder at the ith stage of encoding. Choose

nl+n2+...+nq =ko,l+ko,2+...+ko,t =ao (3.5)

Suppose each m-tuple in fro is mapped into an m-tuple over

the MPSK signal set S by the mapping A(-). Then, we obtain

the following subset of signal points in Sin:

Ao _ _(no)

= {,_(V 1 * V2... * Vt): V1 • Co,l, V2 • 60,2

•.. Vt • Co,t}.

The set Ao is a subspace of S m with dimension ao. This sub-

space Ao is actually a basic t-level block MPSK modulation

code of length m [8]-[14].

The performance of Ao over the AWGN channel depends

upon the minimum squared Euclidean distance and the number

of nearest neighbors. The minimum squared Euclidean dis-

tance of Ao can be calculated using results of [12]. On the other

hand, the performance of Ao over fading channels depends

upon the minimum symbol distance, product distance, number

of nearest neighbors and the squared Euclidean distance to

a lesser extent [17]. The minimum symbol distance of Ao is

given by [17] _o = min[=l 8o,i. Suppose, Ao has minimum

squared Euclidean distance A 2 and minimum symbol distance

,o.
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In the following, the subspace A0 of S m will be used as the

signal space for constructing multidimensional trellis MPSK

codes. Before presenting the code construction, we need to

define a subspace of Qo for partitioning _0- For 1 < j _< _,

let C1j, C25,"', Cqd be a sequence of linear subcodes of

C0j such that

Cq,j C_Cq-l,_ C_ ... C_ C1,3 C_Coj. (3.6)

Let kid be the dimension and 6i,j be the minimum Hamming

distance of Ci,j for 1 < i < q. Then Cij is an (m, ki,j,lfis)

code. For 1 < i < q, we form the following linear code over

the labeling space L: Qi = CiA *Ci,2*. • .*Ci,t. The dimension

of this code is oi = ki, l + ki,2 + ... + ki,,. It is clear that

forl<i < q,

f_i C_ 12i-x. (3.7)

It follows from (3.7) that Q1, Q2,'",12q form a sequence of

subspaces of Qo and

_'_q C__ _'_q-1 C__ --- C _'_1 C _'_0" (3.8)

For 1 < i < q, let

Ai -_ A(f_i). (3.9)

Then, Ai is a subspace of S m with dimension dim(Ai) = ai.

Let the minimum squared Euclidean distance of Ai be A2 and

minimum symbol distance be 6}-t. Equations (3.8) and (3.9)

imply that AI,A2,... ,Aq form a sequence of subspaces of

Ao and

Aq _ Aq-x C_ ... C_A1 C Ao. (3.10)

Suppose the binary codes, Ci,j with 1 < i < q and i _< j < _,

are chosen such that

n i = O'i_ 1 -- O"i. (3.11)

It follows from (3.5) and (3.1 1) that

crl = n2 + n3 + . " + nq

(72 = na + "" + nq

(Tq_ 1 _-- n.q

(Tq _0

fro and its subcodes f_l,f_2,"',f_q are used to form a

sequence of coset codes [7]. Let Ux * U2 * --. * U, be a

vector in f_0 but not in fh. Then Ux * U2..- * Ut + fll is a

coset of _1 in 12o and Ux * U2 * "" * Ut is called the coset
t

representative. Recall nl = _i=l(ko,i - kl,i). Hence, there

are 2 'u cosets of I21 in f_o- These 2 n_ cosets of f_l form a

partition of f_o. Let f_o/ftl denote the set of cosets in f_o

modulo ill- Qo/f_l is called a coset code. Let [ft0/ftl] denote

the set of coset representaft yes of the coset code f_o / 121. Hence

f_o/f_l = [ft0/f_l] + f_l. f_l can be further partitioned using

f12, in the same way as is outlined above. Partitioning each

coset of Q1 in f_0 on the basis of f_2, we form the coset code

f_o/f_ 1/f_2. Let [f) 1/f_2] denote the set of coset representatives

in the partition Q1/_2. Hence each coset in the coset code

f_o/f_lf_2 can be written in the form [_)o/flx]+[fZl/f_2]+fZ2.

Proceeding in this manner, we form the following sequence of

coset codes:

B1 = f_0/fh

B2 = _0/__1/Q2

Bq =_0/QI/_2/--./Qq.

For 1 _< i _< q, each coset in B_-I = f/o/f21/---/f/i-1

consists of 2 'u cosets modulo f_i. These coset codes are used

as the inner codes in the multilevel concatenation in which B1

is used at the first level and Bq at the qth level.

Let w0 and w_ be two distinct points in f_o- If these two

points are in two distinct cosets of B_ then the squared

Euclidean distance between s = A(w0) and s' = A(w_) is

at least A_. If the two points w0 and w_ are in the same coset

of B1 but distinct cosets of B2, then the squared Euclidean

distance between s and s' is at least A12. Generalizing in this

manner, it is easy to see that if the two points wo and w_ have

identical coset representatives in B_ for 1 _< j < i, but distinct

coset representatives for Bi then s and s' have a squared

Euclidean distance of at least A 2 Hence, B1 is the least
i-l"

powerful and Bq is the most powerful coset code in terms of

Euclidean distance.

The same arguments as above will also hold if the minimum

squared Euclidean distance at each stage is replaced by the

corresponding minimum symbol distance.

Encoding of m x 2-Dimensional TCM Code: Encoding is

accomplished in q stages, as shown in Fig. 1, and for 1 _<

i _< q, the ith level encoding is accomplished in two steps: 1)

at any time instant t, a message of kl bits is encoded based

on the convolutional outer code Ci into an ni-bit coded block;

and 2) the ni-bit code block then selects a coset from the

coset code Bi = f_0/f21/.'-/f_i.

The output at the ith level encoder is a sequence of cosets

from Bi. All the possible coset sequences at the ith level

form a trellis, and each branch in the trellis corresponds to

a coset in Bi, and this trellis is isomorphic to the trellis of

Ci. Let v i denote a code sequence in the convolutional code

Ci and let $i denote the mapping from the nl coded output

bits of the convolutional code to the 2 n' cosets. Hence, q&(vi)

denotes the sequence of coset representatives at the ith stage

of encoding, corresponding to the code sequence v i. Hence,

any code sequence in the m x 2-dimensional TCM code can

be written in the form

A(¢l(VX) + _2(vz) + "'" + _q(Vq)). (3.12)

At every time instant t, the encoder puts out ra MPSK signals.

A very interesting and special case of the proposed codes

occurs when q = 2 and the second level outer code is left

uncoded, as shown in Fig. 2. This structure is equivalent to
the structure used for the construction of the multidimensional

codes in [3]. A computer search was used in [3] to find the

convolutional code to be used at the first level. The computer

search selected a convolutional code which optimized the
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Fig. 2. A two-level concatenated TCM system.
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multidimensional code both in terms of Euclidean distance

and number of nearest neighbors.

A multidimensional code is said to be linear with respect
to binary addition, if for any two code sequences in the

multidimensional code, U = _(_1(9.gl) + _2(1_2) + "'" +

eq(t/,q)) and V = )_(¢1(101) Jr- _2(tt2) +''" + Oq(t?q))

v • v _ _((_1(ul) + _2(u2) +.-. + _q(t,q))

+ (_bl(Vl) + q92(t_2) +"" + q)q(t_q)))

is alSO a code sequence, where u/and v i for 1 < i < q denote
output code sequences of the convolutional code encoder Ci

at the ith level. Linearity of the code (in terms of binary
addition) simplifies the error analysis and in addition leads

to a simpler encoder and decoder. The linear structure leads
to the following theorems on the linearity, minimum squared
Euclidean distance, and minimum symbol distance of the

proposed codes.

Theorem 3: A multidimensional code is linear with respect
to binary addition, if all the mappings $_, for 1 < i < q are
linear.

Proof: Recall, that any code sequence in a multidimen-
sional TCM code can be written in the form A(_bl(tq) +

_b2(v2) + --- + c_q(tlq)) where v i for 1 _< i _< q denotes
the output code sequence of the convolutional code Ci at the
ith level. The proof then follows trivially from the definition

of linearity. AA
Theorem 4: The minimum free squared Euclidean distance

of a coset trellis code at the jth level, for 1 < j _<q is lower

bounded by D_;_ free > A_-I" d_Jfree ' where d_)free denotes
• .s], _

the minimum _ branch distance of the convolutional code

at the jth level, Cj.
Proof.- Consider two distinct code sequences, U =

_(_(t,_) + _2(-_) +-'-+ _q(Uq)) and V = ;_(_(t,_) +
_b2(v2) +'"+ fbq(Vq)), where u/ and v i for 1 _< i _< q
denotes two output code sequences of the convolutional code

Ci at the ith level. Assume that it/ = v i for 1 < i < j and

# vj. At a particular time instant t, let A(w) and A(w')
_the corresponding transmitted signal points for U and

V, respectively, where w and w _ E f_0. Since u i = v i for

1 <_ i < j and uj _ vj, hence w and w' have identical coset

representatives in Bi for 1 < i < j and hence the minimum
squared Euclidean distance between A(w) and A(J) is at least

,4(J)A 2 Since Cj has minimum free branch distance "_B-free'
j-l'

hence the two sequences uj and vj are distinct in at least

d(J) branches. Therefore, the squared Euclidean distanceB-free

between U and V is at least A 2 ._0) A A
j- 1 " '_B-free"

Theorem .5: The minimum free squared Euclidean distance

of the overall TCM code is lower bounded by D_ E

minl<j<q{A__ 1 • d(J)_B-free _"

Proof." Consider two distinct code sequences U and V.
Using the same notation as developed in Theorem 4, consider

that u/ = v i for 1 < i<j and that uj # v'. Then,
Theorem 4 gives us the minimum squared Eucli_.anJdistance

between the two sequences. Since j is arbitrary, the minimum
squared Euclidean distance between the two sequences is

obtained by taking the minimum over all the q levels, i.e., if
D2(U, V) denotes the squared Euclidean distance between the

two sequences U and V, then D2(U, V) > minl<j<q{A__ 1 •

d(J) t Since U and V are any two sequences, the TheoremB-free J"

follows. AA

Theorem 6: The minimum symbol distance of the overall

TCM code is lower bounded by _n _> minl_<i<q{6_n "d_-)free} •

Proof" The proof is similar to that in Theorem 5, with
the only difference that instead of minimum squared Euclidean
distance we now consider minimum symbol distance. AA

IV. CODE PROPEKIn_S

A. Spectral Efficiency

At each encoding time instant, k_ + k2 + --. + kq bits are
fed into the encoder (Fig. 1), and the corresponding output
is m MPSK signals. Hence the spectral efficiency of the

m x 2-dimensional TCM code is (k_ + k2 + ... + kq)/m
bits/symbol.

B. Phase Invariance

Phase symmetry of a code is important in resolving carrier-
phase ambiguity and ensuring rapid carrier-phase resynchro-

nization after temporary loss of synchronization [2]. It is
desirable for a modulation code to have as many phase sym-
metries as possible. Recall, that the proposed multidimensional

modulation codes are constructed using q convolutional codes
and q + 1 basic g-level block modulation codes (Fig. 1). The

phase invariance of the proposed codes is a function of both
the inner codes and the outer codes. If convolutional codes are

used at all the q levels, the phase invariance of the conslructed
modulation codes would depend upon the structure of the
convolutional codes used, and for most cases the constructed

modulation codes would have no phase invariance. A special

case of the proposed codes occurs when the outer code at the
qth level is left uncoded (Fig. 2 shows this special case for

q = 2). Most of the codes constructed using this special case
do'have phase invariance. Kasami et al. derived conditions on

phase invariance of basic g-level block modulation codes [16].

A slightly modified form of the conditions proposed in [16]

will be applicable to the proposed codes.
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The following theorem gives the conditions for the proposed
modulation codes to be phase invariant under rotation for this

special case.
Theorem 7: Let A0 = A(C0,x * C0,2 * "" * C0,_) and let

Aq-1 = _(Cq-l,l * Cq-l,2 * ''' * Cq-l,t), where Co,i and

Cq-l,i for 1 _< i <_ t are binary linear block codes of
length m. For 1 < h < _, the multidimensional MPSK TCM
code is phase invariant under 180°/2 _-h phase shifts if the
multidimensional TCM code is linear with respect to binary
addition and

1 • Cq-1, h and (4.1)

CO,h.Co,h+I...Cod_IC_Cq_I,j for h<j<e (4.2)

where 1 denotes the all-one binary sequence of length m,
and for two-binary m-tuples a = (al,a2,...am) and b =

(bl,b2,'"bm),a" b _= (ax - bl,a2 • b2,'.',am • bin), where

a/. bi, for 1 < i < m denotes the logical product of ai and bi.
Proof Appendix."

If the outer code at the qth level is left uncoded, sequences

of signal points from Aq-1 are valid code sequences. The

best phase invariance that can be achieved for the overall
multidimensional code in this case is equal to the phase

invariance of Aq_j. The conditions as stated in Theorem 7

provide a set of conditions which guarantee a certain phase
invariance for the overall multidimensional MPSK TCM code

independent of the convolutional codes chosen. Most codes

designed using the proposed technique, do achieve the best
possible phase invariance (i.e., of Aq_ 1).

V. MULTISTAGE DECODING ALGORITHM

One obvious way of decoding a TCM code proposed in
Section HI, is to form a super trellis for the code, which is

obtained by taking the direct product of the trellises of the

convolutional codes at the q levels. The complexity associated
with this technique (for most cases) would be tremendous.
We will focus on a multistage decoding scheme, in which

the decoding is carried out in q stages, corresponding to
the q levels of the multidimensional TCM code. Let V =

(sx, s2, s3,...) be the transmitted code sequence, where si
for 1 < i < ec denotes a signal point in the MPSK

signal constellation and let R = (rl,r2,rs,...) denote the

corresponding received sequence. Using (3.12), V can be
written in the form V = )_(¢1(Vl) + ¢2(vz) +-" + eq(t,q))

where v i for 1 < i < q denotes a code sequence in the
convolutional code Ci.

First Stage of Decoding: At the first stage, Vl is estimated

using the received sequence R. Recall, that at the first stage
of encoding, the trellis is isomorphic to the trellis of the
convolutional code C1 used at the first level, with each branch

of the trellis corresponding to a coset in B_. Each coset
in B1 can be written in the general form w0 + _'_1, where

w0 • [f_0/Q1]. Let us call this isomorphic trellis C1. Hence,
each branch of C1 consists of 2"1 points, corresponding to

the 2°1 points in f_l- The trellis Cj is used to form the trellis

)_(01), where

A(O1) =_ {)_(v): v • 01}. (5.1)

The trellis )_(C1) will be used for decoding at the first stage.
Any code sequence in A(C1) can be written in the form

A(¢I(ul) + Wl) (5.2)

where Ul is a code sequence in C1 and wj is a sequence

of points from f21, i.e., wl = {(wl,1,wl,2,wl,3," "): wl,_ •
f_l for 1 < i < oe}. Standard soft-decision Viterbi decoding I
is performed on R using the trellis A(C1). This yields a code

sequence ),(¢1(01) + tbl) in ),(C1) which is closest to the

received sequence R in terms of squared Euclidean distance.
The code sequence 01 forms an estimate of the sequence

vl. tbj denotes a sequence of points from f21. Since 01 is a

code sequence in C1, the estimate of the information sequence
associated with the first level can be obtained from 01.

The ith Stage of Decoding: The second and subsequent

stages of decoding are very similar to the first stage of

decoding. For 2 < i < q, let us consider the ith stage of
decoding. The previous i - 1 stages of decoding give us

estimates of v3", denoted by 0j for 1 < j < (i - 1). Using
arguments sirmlar to that given above, we form the isomorphic
trellis Ci, where any code sequence in Ci can be expressed

in the general form

¢l(01)+¢2(02)+'"+¢i-l(0i-1)+¢i(ui)+wi (5.3)

where u i is a code sequence in the convohitional code at the
ith level, C'i and tai is sequence of points from f_i. Each branch
of C_ consists of 2 '' points, corresponding to the number of

points in f_i. The trellis C/ is used to form the trellis )_(Ci),
where

{a(,,): ,, • (5.4)

The trellis _(Ci) will be used for decoding at the ith stage.
Standard soft-decision Viterbi decoding is performed on R

using the trellis ,_(Ci). This yields a code sequence

_(¢l(01) dr¢2(O2)-]-..--t-¢i_l(Oi_1)q-¢i(Oi)q-{_li) (5.5)

in )_(Ci) which is closest to the received sequence R in terms

of squared Euclidean distance, where 0i is a code sequence in
the convolutional code used at the ith level, Ci, and Di is a

sequence of points from f_. The code sequence 0i fornls an
estimate of the sequence vi. Since 0i is a code sequence in

Ci, the information sequence associated with the ith level can
be obtained from 0i.

The branch metric (squared Euclidean distance) for each

branch in ),(C'i), 1 < i < q, is calculated by taking the

m received signals corresponding to that branch and finding
the element in the coset corresponding to that branch, which

is closest to the m received signals in terms of Euclidean

distance. This process of finding the closest element in the
coset is termed as closest coset decoding. The Euclidean

distance corresponding to the closest element in the coset
becomes the branch metric. If m is small, calculation of the

J We will use minimum squared Euclidean distance as the decoding metric

for both the AWGN and fading channels.
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branch metric does not represem a formidable task, however

if ra is large and if f_i, 1 _<i _< q, has trellis structure then a
trellis can be used to calculate the branch metric. In addition, if
the number of states associated with the trellis structure of Qi

is big, multistage decoding for [2_ can be used to further reduce
the decoding complexity. Multistage decoding of f_ would be

carried out in the same way as proposed in [10] and [11].
Another way of reducing the decoding complexity associ-

ated with closest coset decoding would be as follows: Consider
a trellis C_"P, where any code sequence in the trellis _up can

be written in the following form:

_l(t?l) --[- _2(_2) +... + _i_1(_i_1)-_- _i(_i)-_-tO_ up (5.6)

.sup up
where w i is a sequence of points from _/ , and the rest of

the sequences are as before, ff Qi C _-_up then the treLlis Ci is

a subeode of the trellis _//up. As such, instead of using Ci we

can use _up at the ith stage of decoding, f_:up can be chosen
to have a simpler trellis structure as compared to that of f_i.

This would reduce the complexity associated with closest coset
decoding and hence reduce the decoding complexity associated
with the ith stage of decoding.

Multistage decoding leads to error propagation. To reduce
the effect of error propagation, the first couple of decoding
stages should be powerful. A special case of the decoding

algorithm occurs for q = 2 and k2 = n2. If closest coset

decoding at the first stage is carried out in a single-stage,.

then the overall decoding of the multidimensional code is
also one-stage. If m is small, then one-stage closest coset

decoding is feasible, however if m is large, multistage closest
coset decoding could be adopted to reduce the decoding
complexity. The overall decoding in the latter case would then

be multistage.
Decoding Complexity of the Proposed Decoding Algorithm:

The complexity of the proposed schemes will be measured in
terms of the number of computations required for the decoder

to produce an estimate of each 2-D PSK signal. For I < i < q,
let 71 be the total encoder memory of the couvolutional code

used at the ith level in the proposed scheme. Consider the

ith stage of decoding. Then, due to the Viterbi algorithm
alone, the complexity is 2_+k_ additions and 2_'(2 k' - 1)
comparisons, per m x 2-dimensions (since each branch has

m MPSK signals). The branch metric calculation forms an
additional complexity and depends upon the choice of the

inner codes. Let us call this complexity Be,. Hence the total
complexity per m x 2 dimensions is: 1) q 2-y,+k,Ei= 1 additions,
2) El=lq 2"r'(2k' - 1) comparisons, and 3) Ei=lq Bc,. Dividing

this total complexity by rn would give us the number of
computations required per two dimensions (i.e., the number
of computations required to decode a single MPSK point).

VI. DESIGN RULES FOR GOOD CODES

The performance of codes designed using the proposed
technique depends upon various factors. If all the design

considerations are followed strictly, the codes usually would

achieve good performance and in some cases, with reduced
decoding complexity. Some of the most important design

considerations are: 1) the number of levels q, in the multi-

level concatenation should be kept as low as possible. The

advantages of this are twofold. First, reducing the number of
encoding levels, would reduce the number of decoding stages

and in most cases reduce the decoding complexity. Second,
reducing the number of decoding levels also decreases the

amount of error propagation which occurs as a result of the
multistage decoding. To reduce the error propagation due to

multistage decoding, the first few levels should be chosen

extremely powerful, so that the amount of error propagation is
decreased. This however leads to higher decoding complexity
for the first few levels. 2) The number of dimensions, i.e.,

m x 2, should be kept as low as possible. As rn increases
the number of nearest neighbors associated with the code

also start increasing, which limits the performance of the
code. On the other hand, increasing m usually helps in

decreasing the normalized decoding complexity associated
with the code. 3) Theorem 5 gives us the minimum squared
Euclidean distance of the overall multidimensional TCM code.

For a given minimum squared Euclidean distance of the
TCM code, dB-fr_ of the convolutional codes chosen to
form the multidimensional TCM code should be chosen to

be as small as possible. Lower dB-fr_ wouM imply lower
decoding complexity associated with the convolutioual code
decoding. The above also holds for Theorem 6. 4) The branch

computation complexity Bc_ at the ith stage of decoding

depends upon Ai. If Ai is chosen to have a simple trellis

structure, the corresponding branch computation complexity
will be minimal. If on the other hand, the trellis for Ai

is sufficiently complex, techniques described in Section V
can be used to reduce the computation complexity. Tllese

techniques however, usually lead to degraded performance.

5) Construction of codes with good phase invariance, places
restrictions on codes as per Theorem 7 and hence in most cases
this would limit either the performance and/or the achievable

spectral efficiency.
Most design considerations mentioned above lead to con-

flicting requirements. Hence, there is a tradeoff involved
between performance, decoding complexity, spectral efficiency

and phase invariance.

APPENDIX

Proof of Theorem 7: The proof follows very closely the

derivation of the phase invariance conditions in [16]. For the
code to be phase invariant by 180°/2 t-h, any code sequence in
the multidimensional code when rotated by 180°/2 t-h should

produce another code sequence. Let V be the transmitted code
sequence. Let V _°t denote the code sequence V rotated by

180°/2 t-h. Recall from Section HI, that the basic building
block of the proposed multidimensional codes is A0, hence

any valid code sequence in the multidimensional code can
be considered to be a sequence of points from A0. Consider

the 3th time instant. Let Vj = A(V lj * V2_ * .... * Vl,$)

time instant, where, Vi, j E Co,i for 1 _< i _< g. Also, let
rot rot, ot rot

V- = A(V x • V*2j*...*Vtj) bethe sequence of m MPSK3 ,3 , ,

signals for V r°t at the jth time instant, where, V_,_t E Co,i
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for 1 < i < L Using results of [16], V_ °t can be written in

the following form:

°t =  ((Vlj + V'I,j) * (V2,j + V'2j)*

•..* (V ,j + (A.1)

where V_,._ = 0 for 1 _< i<h,V t,a,.7- = 1 and V_,j =

Vhj • Vh+l,j...Vi_l, j for h < i < e and 0 denotes the

all-zero sequence of length ra. Form the sequence V', such

that the jth time instant of V' is

= • v; j .---. v',j/ . (A.2 
Then, for the code to be phase invariant under rotations

of 180°/2t-h,V ' should also be a valid code sequence.

Sequences of signal points from Aq-1 form a valid code

sequence. Hence, if V_ E Aq-1 then V is phase invariant

under rotations of 180°/2 t-h, i.e., if 1 E Cq-l,h and

Vh,j.Vh+x,j...Vi_l,jECq_l,i for h<i<g (A.3)

then V is phase invariant under phase rotations of 180°/2 t-h.

Since the above should hold for any transmitted sequence V,

the Theorem follows.
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